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The recursive residue generation method (RRGM) permits the generation of time-depen- 
dent transition amplitudes in many-state quantum systems. An important step in the method 
utilizes the Lanczos algorithm to tridiagonalize the matrix representation of the Hamiltonian. 
Analysis of this sparse matrix, for a generic laser-molecule Hamiltonian, revealed structure 
(repeating blocks of elements in each off-diagonal) which allowed for greatly reduced storage. 
In addition, utilization of this structure for construction of a smart matrix-vector multiplier 
then permitted calculations on systems with very large bases (-40,000). Time-dependent 
transition probabilities are shown for excitation into several bands of states in a system with 
over 3000 states. 8 1985 Academic Press, Inc. 

1. INTRODUCTION 

The recursive residue generation method (RRGM) is a recently formulated 
approach to the computation of time-dependent transition amplitudes in many- 
state quantum systems [ 1,2]. In many-state quantum dynamics (a diverse subject 
which includes molecular multiphoton excitation, the influence of relaxation 
processes on spectral line shapes, and the interaction of adsorbed particles with sur- 
face vibration-electronic states), the principal limitation has been the inability to 
routinely obtain eigenvectors of large symmetric (> 1000 rows or columns) 
matrices. In the RRGM, transition amplitudes are computed one at a time by 
recursively generating the residues of several Green functions; eigenvectors of large 
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matrices are not computed at all. An important step in the RRGM is 
tridiagonalization of the Hamiltonian matrix, for which the Lanczos algorithm 
[3-S] is admirably suited. 

In our previous studies [ 1,2], we either stored all nonzero elements of the sparse 
Hamiltonian matrix in fast storage, or we repeatedly read batches (l&20,000 at a 
time) of matrix elements from disk into fast storage. In the former case, systems 
with up to about 12,000 states could be readily handled (on the CYBER 170/750), 
but we would like to be able to deal with systems involving many more (> 50,000) 
states. To overcome this limitation on our earlier calculations, we closely examined 
the structure of the sparse matrices associated with a generic molecular 
Hamiltonian. The structured sparsity discovered as a result of this analysis appeared 
as repeating sets of nonzero elements in each of the off-diagonals of the 
Hamiltonian matrix. In addition to allowing for very compact storage of the 
Hamiltonian matrix, this structure permits the design and implementation of a 
smart matrix-vector multiplier which in turn greatly accelerates the most time con- 
suming (Lanczos resursion) aspect of the RRGM. As a result, it is now possible to 
extend dynamical studies to systems with -40,000 states. Although this type of 
structure in the Hamiltonian matrix depends upon the problem (i.e., Hamiltonian 
operator) under consideration, the concept of utilizing structure in the off-diagonal 
elements transcends our specific application. 

The Lanczos algorithm plays a central role in the RRGM. Over the past decade, 
a greater appreciation of its powers has arisen through applications to such diverse 
topics as: electronic and phonon state densities in solid state physics [S-11], the 
dynamic Jahn-Teller effect [ 12, 171, molecular vibrational energies [ 181, magnetic 
relaxation lineshapes [ 19-221, electronic excitation-ionization spectra [23], and 
the calculation of optical potentials [24]. 

In Section II, the RRGM for laser-molecule interaction is presented in more 
detail than in an earlier study [ 11. Structure in the sparse Hamiltonian matrix is 
described in Section IIB. Section IIC reviews the RRGM, while Section IID concen- 
trates on utilizing the Lanczos method for large scale computations. Then, in Sec- 
tion III, for the Hamiltonian described in Section IIA, numerical results are presen- 
ted for probabilities of excitation into bands of excited states. A brief summary 
appears in Section IV. 

II. THEORY 

A. Model Hamiltonian 

A reasonable model for the interaction of a monochromatic laser with a mul- 
timode molecule involves a classical electromagnetic field, dipole coupled to an 
anharmonic pump mode, which in turn is linearly coupled to a multimode har- 
monic bath. The total Hamiltonian is the sum of a molecular (time-independent) 
term and a time-dependent driving term, 

H(t) = H, + H’(t), (1) 
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where 
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n 
H, = fiw,[(u+a) - x(u+a)‘] + 9 n ho,b~bl+ f lqu+b, + ab!) (2) 

i= 1 i=l 

and, for t >, 0, 

H’(t) = V,,‘j(u + a+) cos w,r. (3) 

In these equations, (at, u> and {bf, bj} are raising and lowering operators for the 
pump mode and the ith bath mode, respectively. The anharmonic mode has a 
(zero-order) frequency o, and anharmonicity parameter x. The third term in 
Eq. (2) is the Hamiltonian for ng uncoupled bath modes, while the fourth term 
provides intramolecular vibrational coupling between the pump mode and each 
bath mode. Finally, in Eq. (3), Vrad = pOEO determines the strength of the linear 
dipole coupling (a + at) between the laser, of frequency w, and field strength E,, 
and the pump mode. This Hamiltonian and its variants have been used before in 
studies of laser-molecule and laser-adatom interaction [25, 261. 

If In) denotes a harmonic basis state, where n = 0, 1, 2,..., then the well-known 
matrix elements (analogous expressions involve bf and bi) [27] over ut and a allow 
simple evaluation of all matrix elements involving operators for a single mode. For 
the mulitmode problem, products of harmonic basis states 

where In,) denotes a pump mode state, and Ini) is an ni phonon state for the ith 
bath mode, form a basis for representing the complete Hamiltonian. In the matrix 
representation of Hi, the first three terms, denoted H, + H, (anharmonic + bath), 
in Eq. (2) will produce only diagonal elements, while the last term, denoted H, 
(coupling), produces only off-diagonal elements. 

It is very convenient to attach a single index to the vector of quantum numbers 
{ n,, n,,..., nB} representing one basis element. If D, represents the maximum num- 
ber of states allowed in the pth bath mode, then the single integer m attached to a 
basis element is [ZS] 

m=(n,+l)+D,n,+D,D,n,+ ... +D,Dz...Dpna. (4) 

For example, in a system with one pump mode and two bath modes in which only 
the ground and first excited state are allowed in the basis (Dl = D, = 2), 

m=(n,+1)+2nl+4n,, 

so that the 8 basis elements, as m ranges from 1 to 8 are: IO) IO) IO), 11) IO) IO), 
IO> 11) IO>, 11) 11) lo>, IO> IO> II>, 11) IO> Il>, IO> II> Il>, and 11) 11) 11). 
Of course, the indexing scheme attached to the basis elements determines the pat- 
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tern of nonzero elements in the matrix representation of the Hamiltonian. We will 
return to this point in Section IIC. 

The transition amplitude Ap(t) between basis state Ii) at t = 0 and basis state 
1s) at time t is a matrix element of the propagator .V(tlO) L-291, 

&W = u-l U(4O)li). (5) 

The propagator solves the Schriidinger equation subject to the initial condition 
U(Ol0) = 1. For times which are multiples of the laser period r = 2n/ol, the p-cycle 
propagator is obtained through products of one-cycle propagators, 

ww) = C~(40)lP. (6) 

This means that if the propagator over one cycle can be found, then propagation to 
the end of p cycles follows directly from Eq. (6). An exponential solution for the 
propagator, which facilitates utilization of Eq (6), is provided by the Magnus series 
C31, 321, 

U(rlO)=exp[-iQ(z)/fi] =exp[-i(Q,(z)+Q2,(r)+ ***)/ti)], 

where the first and the second order terms are, 

(7) 

It is convenient to define the quasi-energy operator [34,35] as the effective time- 
independent Hamiltonian which advances the system through one laser cycle: 

U(zJ0) = exp[ -iMz/h]. (9) 

Comparing Eqs. (7) and (9), M= Q(t)/z. It can be shown that M is a real, Her- 
mitian operator [2]. In addition, p-cycle propagation now follows trivially from 
Eq. (6) 

U(pzl0) = exp[ - iMpz/fi]. (10) 

Using the Hamiltonian in Eqs. (1 )-( 3), the quasi-energy operator, through the third 
order, is [2] 

M=H,,,- 7;rl;i {CHm, CHm Hrll -$CHr, CH,, Hrll} (11) 

or, in terms of matrix elements within the zero-order molecular basis, 

Mm = J? d,, + (Hd,, - WJ,, - (WpqC(~ - ~,/ti~,]~, (12) 
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TABLE 1 

PARAMETERS IN HAMILTONIAN” 

fiwa Pump mode fundamental 1.00 
x Pump mode anharmonicity 0.01 
fiw, Bath mode frequencies 0.97, 0.99, 1.01, 1.03 
K Intramolecular coupling* 0.03, 0.06, 0.12,0.15 
V rad Radiative coupling 0.12 

a See Eqs. (2), (3). 
h The intramolecular coupling was the same for all four bath modes, but assumed the values listed 

here. 

which is correct through the lowest orders in the intramolecular and radiative 
coupling operators, 

H,= 2 V,(a+b,+abf), 
i=l (13) 

H, = V,,(a + a+) 

The structure of the effective Hamiltonian matrix defined in Eq. (12) will be 
analyzed in the next section. Recently, we have avoided the Magnus approximation 
by working with a quantized radiation field, instead of the classical field in Eq. (3). 
However, the off-diagonal elements have the same structure as the operator in 
Eq. (12). 

Parameters in this Hamiltonian are listed in Table I. In addition, we will only 
consider nS = 4, i.e., four bath modes coupled to the pump mode. For bath frequen- 
cies near the pump mode fundamental, the states cluster into quasidegenerate bands 
near E = 0, 1, 2 ,..., with 1 state in the lowest band (Band 1 ), 5 states in Band 2, 15 
states in Band 3, etc. 

B. RRGM: Review [l, 2) 

In this section, we will present a brief review of the RRGM [ 1,2]. An outline of 
the steps is shown in Fig. 1. From Eq. (5), the quantum mechanical transition 
amplitude between initial state Ii) at time t = 0 and final state If) at time t is given 
by 

(f 1 e-iMM li) =I (fla)(ali) eCiEb”h, (14) 
u. 

where {la), a = 1, 2 ,..., N} denotes the set of eigenstates of M, M la) = E, la). In 
the RRGM, direct calculation of the eigenvector coefficients (f 1 a) is avoided. 
Instead, we focus upon the transition residues (a real Hamiltonian and real-valued 
basis elements are assumed). 

R~(a)=(fJa)<ali)=3[:<u,Ia)2-~vgIa)21=~[R,(a)-R,(a)], (15) 
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{Rif (a)}-<f IU(t,o)li > 

FIG. 1. RRGM flowchart. 

where the two transition uectors are 

(16) 

The quantities R,(U), R,(U), and R,(cl) are residues, at pole E,, of the diagonal or 
off-diagonal matrix elements of the Green operator (z-M)-‘, where z does not 
belong to the spectrum of M; for example, 

G,(z)= (uoI(z-AI)-‘h,) =; ‘:“;“, 
d 

G,Jz)= (fI(z-AI)-‘Ii)=1 ‘frJg’i), 
ca n 

(17) 

If the Green function G,(z) is known, it is a trivial matter to extract the set of 
residues 

R,(tl)=Ji% (z- E,)G,(z)=jij: (z-E,)(uo((z-M)-l~uo). (18) PI a 

The problem is to first calculate G,(z) and G,(z); residues {R,(U)} and {R,(a)} can 
then be extracted from Eq. (18), and the time-dependent transition amplitudes can 
be computed from Eqs. (15) and (14). 

To produce G,(z), image the construction of a new orthonormal basis (the recur- 
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sion basis), { lu,); j = I ,..., N}, f rom the original “molecular” basis. In this new basis, 
the equation defining the N x N Green matrix is, 

(zl -M) G(z) = 1, (19) 

where G has elements which are the Green functions, G,(z) = ( ui 1 (z - M)) ’ ( uj), 
Each matrix in this equation can be very large, so direct computation of G is not 
feasible. However, the key point is that we need only the 1,l element in the G 
matrix; this is the element previously denoted G,(z). Now, by the usual procedure 
to invert matrices, 

G,(z) = det[zl - M]‘/det[zl -M], (20) 

where superscript r denotes the reduced matrix obtained by deleting the first row 
and column from (zl - M). In terms of eigenvalues of M and M’, denoted (E, > 
and {Eg)}, respectively, the ratio of determinants becomes 

G 
u 

(z) = (2 - EP), . . . (z - Ej;“‘_ 1) 

(z- E,)...(z- EN) ’ 

Note that there are (N- 1) products in the numerator, and N products in the 
demoninator. This result, when combined with Eq. (18), permits the evaluation of 
residues in terms of eigenualues (not eigenvectors), 

(E, - EI”)) (E, - Eri ,)(E, - EC)) 
&(‘)= (E,-E,) “. (E,-E,_,)(E,-E,,,)“’ 

(E -EJVU)J 
(kc-W . 

(22) 

The significant result is that all residues associated with G,(z) may be computed 
from two sets of eigenvalues, (E,} and {Ep)); no eigenvectors are needed. In a 
similar way, residues associated with G,(z) may be computed from (E,} and (EC)}. 

The only remaining feature to be discussed (Section IID) is how to construct the 
two recursion bases, flui) > and (IV,) >. For this, we use the powerful Lanczos 
method [3,4], which builds the new vectors, one at a time, from the old ones in 
such a way that the Hamiltonian matrix is converted to tridiagonal (Jacobi) form. 
Initiated with the starter la,), n-step Lanczos recursion simultaneously builds 
elements in the n x n Jacobi matrix J and the recursion vectors 
{lu,), l%Lr l%-l)Ir which span the n-dimensional subspace V,. Obtaining 
eigenvalues (E,} from J and {EC)) from J’ is computationally not demanding, as 
discussed in the next section. 

Moro and Freed, in connection with their use of the Lanczos algorithm to 
generate ESR spectra [21,22-J, mentioned that the Lanczos method can be viewed 
in two ways: (1) as a numerical algorithm to tridiagonalize symmetric matrices, (2) 
“a theoretical method that can concisely extract the relevant information from a 
general description of physical systems.” With regard to the latter view, they 
introduced the concept of the optimal reduced space (ORS). This is the subspace 
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with the least dimension (n), for a specified Nx N matrix M, that generates results 
(in our case, transition probabilities) correct to within a fixed accuracy of the full 
problem. As n increases, the Lanczos algorithm constructs subspaces V,, that 
progressively approximate the ORS. 

C. Structured Sparsity 

Analysis of the quasi-energy matrix described in the previous section showed a 
sparse, real-valued, symmetric matrix with nonzero values along the diagonal and 
five off-diagonals in the upper triangle. If we allow a maximum of N, states in the 
pump mode and a maximum of Nb in each bath mode, then the total basis size is 
N= N,(N,,)“fl. For the computations in Section III, na = 4, so that N= N,(N,)4. The 
sparsity of M is illustrated in the following example: if N, = N, = 5, then N = 3125 
but there are only 24,125 nonzero matrix elements (0.25%) out of a total of 
9,765,625. In the first version of our code, all of the nonzero elements of M were 
stored as a vector [ 11. In addition, a vector of integers, ICOL, gave the column 
index of each nonzero matrix element. However, unlike many sparse matrix storage 
algorithms [25 J, it was not necessary to store the number of nonzero elements in 
each row; the reason is that whenever ICOL decreased, the next matrix element 
must lie in the next row. 

A much more efficient way to store and utilize M was apparent after analyzing 
the structure of each of the live off-diagonals. If we let the integer Nd denote the dis- 
placement of the dth off-diagonal to the right side of the diagonal, then we will be in 
a position to describe the location and structure of each off-diagonal. 

First off-diagonal (N, = 1). There is a vector of elements, denoted A, of lenth N,, 
which is repeated (N- 1 )/N, times as we advance down this off-diagonal. This off- 
diagonal arises only from radiative coupling and vector A is (for N, = 5, Nb = 3) 

(23) 

Second off-diagonal (N2 = N,). This off-diagonal, and the three higher ones, arise 
only from intramolecular coupling between the pump mode and one of the bath modes. 
The second off-diagonal arises from pump-bath mode 1 coupling, V,(a+b, + abf). 
This off-diagonal has N,, vectors, which for the case Nb = 3 are denoted B,, C,, and 
D1, each of length N,, with the whole unit, of length N, . N,, repeated (N4, - 1)/N, 
times as we advance down the off-diagonal. For N, = 5, Nb = 3, these vectors are 

c, = VI. (0, $3 fi, $i J@, 
D, = V, . (0, 0, 0, 0, 0). 

Note that the last vector is zero-valued. 

(24) 

Third off-diagonal (N, = N,N,,). This off-diagonal arises from pump mode-bath 
mode 2 interaction. With V2 replacing V, in the above equations, we obtain vectors 
B2, C1, and D2. The third off-diagonal then consists of the set: vector B, repeated 
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N, times, followed by vector C, repeated N, times, followed by vector D, again 
repeated N, times. This whole unit, of length N, Ni, is then repeated (Nz - 1 )/Nb 
times to fill the off-diagonal. 

Fourth off-diagonal (N, = N,Ni). This off-diagonal consists of vector 
B,( = V3 * B,/V,) repeated Ni times, followed by vector C, repeated Ni times, 
followed by vector D3 repeated Ni times; this whole unit, of length N,Ni, is then 
repeated (Ni - 1)/N, times to fill the off-diagonal. 

Fifth off-diagonal (N, = N,Ni). This off-diagonal consists of vector B, repeated 
Ni times, vector C, repeated Ni times, followed by vector D, repeated Nt times. 
This whole unit, of length N, Nt, is not repeated. 

In the previous work Cl], we read all nonzero matrix elements from a disk file. 
However, in this study, all computations are done with fast memory, without the 
use of secondary storage, so direct comparisons of computer times are not 
meaningful. By using the repeated block structure in each off-diagonal, we were 
able to cut the storage from O(N’) if all elements are stored, to -6N if the diagonal 
and 5 off-diagonals are stored, to finally: the main diagonal (N), plus one vector of 
length N, for the first off-diagonal, plus one vector of length N,(Nb - 1) for the 4 
bath mode off-diagonals (we do not store the zero block D, in the bath off- 
diagonals). The total storage is only N + N, + N,(Nb - 1 ), a number clearly much 
smaller than either 0(N2) or 6N. Compact storage schemes, and the use of a good 
matrix multiplier are keys to efficiently executing large eigen-system calculations in 
this and other [3] problems. Although the above description of structured sparsity 
is particular to the generic Hamiltonian in Eqs. (2), (3), other more complicated 
algebraic Hamiltonians, which are sums of products of raising and lowering 
operators, (bt)m(bj)“, when represented in product bases In, ) In,) ... in,), will also 
have off-diagonals with repeated symmetry blocks. For the efficiency of both 
storage and matrix multiplication, we highly recommend that one take advantage 
of this structure. 

D. Computational Techniques 

Standard techniques for solving eigenstate problems (e.g., those in the EISPACK 
library) are only useful for relatively small problems (N < 250, where N is the order 
of the matrix M), mainly because storage increases as O(N2), while the number of 
operations increases as 0(N3). The Lanczos recursion method is a viable approach 
to large (Ng250) problems of this type. When implementing the Lanczos method, 
it is important to take advantage of the sparsity of M by means of an efficient 
matrix-vector multiplier. Our utilization of Lanczos recursion is based upon the 
version which requires only 2 n-vectors [4, 63; in addition, we developed a 
sophisticated multiplier which takes advantage of the previously described sparsity 
pattern. Another important aspect of this study is that we can easily change the 
number of bath modes and still carry on with the whole process of obtaining eigen- 
values and residues, without increasing the storage requirements. Results obtained 
with increasing values of ns will be presented elsewhere [37]. 
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To generate the sets of eigenvalues needed to compute residues in Eq. (20), we 
will use the Lanczos recursion method [4,6] to convert the Hamiltonian matrix M 
into a Jacobi (tridiagonal) matrix, J. Once the diagonal (a,,, a,,...) and off-diagonal 
(b,, &,...I elements of J have been computed, the eigenvalues are obtained quickly 
(in about 10% of the total CPU time) and with no additional storage by use of the 
EISPACK routine TQLRAT. Tridiagonalizing M is best viewed as arising from a 
transformation from the original molecular basis { Ik), k = 1,2,..., N} to the recur- 
sion basis ( In), n = 0, l,..., N- 1). In this new basis, the only nonzero matrix 
elements of M are the diagonal self-energies (a,) and the nearest-neighbor coupling 
energies (b,). In effect, we have converted the original problem, with a complex 
network of interstate couplings, to a one-dimensional disordered lattice. We will refer 
to a, and b,+l as specifying one link in this 1 D chain used to portray J (e.g., 
see [lo]). 

In the Lanczos algorithm, each recursion step “forges a new link in the chain.” 
Starting with the initial recursion vector IO), after forming the vector M IO), the 
first self energy is aO= (01 M IO). The residual vector (M IO) - IO) aO} is then for- 
med; its norm determines the first coupling element in J, b, = IIM IO) - IO) a,lJ ‘I*. 
The next normalized recursion vector is then 11) = (M IO) - IO) aJ/b,. Now, 
given the recursion vectors In) and In - 1 ), and the previous chain link (a,- ,, b,) 
in fast storage, the next chain link is then generated from the explicit three-term 
recurrence relation 

In+1)={MIn)-In)~,-In-~)b,}lb,+,, (25) 

where a,= (nl M In), and b,,, normalizes the residual uector, {M In) - In) a, - 
(n - 1) b, >. By construction, at least in infinite precision arithmetic, each recursion 
vector is implicitly orthogonal to all previous ones. In order to start the recursion, 
we choose either IO) = luO) or IO) = IQ,). 

Having generated the sets of self-energies and off-diagonal coupling energies from 
the starter IO) = In,), two diagonalizations (using TQLRAT) yield eigenvalues of 
J, denoted {E,}, and eigenvalues of the reduced Jacobi matrix in which (b, is set to 
zero), denoted { Eg’). From these two sets of eigenvalues, all residues R,(a) are 
computed from Eq. (20). Priming the recursion method with the other starting vec- 
tor IO) = Iv,) then leads to two additional sets of eigenvalues {E,} and {EC)}. (Of 
course, eigenvalues of the two full J matrices will be identical, for the luO) or lu,) 
starting vectors.) The residues R,(a) are then computed from an equation 
analogous to Eq. (20). The transition residues R,Acr) then follow very simply from 
Eq. (17). 

A significant feature of the recursion method (mentioned earlier in connection 
with the optimal reduced space) is that the number of chain links n needed for con- 
vergence is usually much smaller than N, the size of the original molecular basis. As 
recursion proceeds, each chain link generates a more distant environment of the 
transition of interest. As a result, the eigenvalues and largest residues which are 
most important for the i +f transition are generated quickly; refinement of these 
values along with the generation of small residues and their eigenvalues occurs as n 
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increases. This feature has been demonstrated elsewhere [ 1,2] for multiphoton 
excitation; a similar situation occurs in applications to solid state physics [lo], and 
in the calculation of ESR lineshapes [21,223. 

As recursion proceeds, rounding errors in finite precision arithmetic lead to loss 
of significant figures which produces a gradual (after 3&50 steps) loss of global 
orthogonality (and linear independence) in the recursion basis. Numerical 
experience has shown that this results in multiple copies (“ghosts”) of some eigen- 
values, usually those on the edges of the range of eigenvalues. In addition, some 
“incorrect eigenvalues” (i.e., eigenvalues which are poor approximations to any real 
eigenvalues) are produced, which eventually settle onto actual eigenvalues as n 
increases. These spurious eigenualues [8] must be removed from the eigenvalue lists 
before computing residues from Eq. (24). This is accomplished in a two-step 
procedure, as discussed elsewhere [l, 21; it is an application of the 
Cullum-Willoughby method. The validity of the method for our application was 
established by comparing eigenvalues from direct diagonalization with those from 
the recursion procedure. 

It is important to remove the multiple eigenvalues before using Eq. (22) to 
evaluate residues. Since different numbers of ghost eigenvalues may occur for each 
eigenvalue of both the full matrix M and the reduced matrix M’, it is essential to 
remove multiple copies from both lists (E,} and (EC)). However, eigenvalues 
which appear in both lists (denoted “spurious” by Cullum and Willoughby) lead to 
cancelling contributions to Eq. (22), so they do not have to be removed from either 
list. A necessary, but not sufficient, check on the residues is the upper bound 
R,(a) < 1 and the sum rule CbR,,(a) = 1. In practice, the sum rule is obeyed to 
within machine precision. 

Computations with the Lanczos recursion procedure are greatly aided if M is a 
sparse matrix. For the algebraic Hamiltonian in Section II A, this is the case; the 
fraction of nonzero elements is generally less than 5%. Since there is discernable 
symmetry in the pattern of off-diagonal elements (e.g., repeating blocks of nonzero 
elements in each off-diagonal), our specialized multiplier (for obtaining M lUj>) 
greatly speeds up the recursion process. This makes it possible to solve problems in 
fast storage that were far beyond the scope of any previous method (e.g., 
N- 40,000). 

II. RESULTS 

In this section, time-dependent results will be shown for one case: a pump mode 
interacting with four bath modes (np = 4), with a maximum of 5 states per mode. 
This gives a total basis size of N= 55 = 3125. For the Hamiltonian parameters listed 
in Table 1, Band 1 (E-O) has one state, Band 2 (E- 1) has live states, etc. In all of 
the cases considered here, Vrad, which controls the pump mode-laser interaction, 
will be held constant, while Vi, which determines the pump mode-bath mode 
interaction, will be increased in a series of steps from +vr,, to I+ I’,,,. The ground 
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FIG. 2. Time-dependent transition probabilities for Band 2, V, = iVrad: (a) ground state-pump mode 
probability; (b) ground state-bath mode probability; (c) total transition probability to Band 2. 
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FIG. 3. Same as Fig. 2, except that V,=fVrad. 
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FIG. 4. Same as Fig. 2, except that V, = V,,. 
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TIME (PSI 

FIG. 5. Same as Fig. 2, except that V, = l$Vrad 

state-pump mode transition probability, the ground state-bath mode (for one bath 
mode in the band) transition probability, and the total transition probability (sum- 
med over the pump and bath modes) will be illustrated for Bands 2 (5 states) and 3 
(15 states). 

Figure 2 shows transition probabilities to Band 2, for weak intramolecular 
coupling, Vi = $Vrad. In part (a), there is a strong beating pattern in the pump 
mode transition probability due to interference between high frequency pump mode 
Rabi oscillations and the low frequency bath-pump mode interaction. Note that the 
pump mode probability rises quickly, before the bath modes have time to respond. 
In part (b), the probability in one bath mode is shown; probabilities for the other 
bath modes are qualitatively similar. The slow, reversible exchange of probability 
between the pump and bath modes is evident when parts (a) and (b) are compared. 
Finally, part (c) shows the total band probability. The envelope minima near 
t = 0.15, 0.40, 0.65, and 0.90 in part (a) have largely been tilled in (due to bath 
mode excitations peaking at these times). 

0.0 0.2 0.4 0.6 0.8 
5 

I.0 0.2 0.4 0.6 0.8 I.0 0.2 0.4 0.6 0.8 1.0 

TIME(PS) 

FIG. 6. Time-dependent transition probabilities for Band 3. The right ordinate applies to part (c) 
only. 
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TABLE II 

Central Processor Times (CYBER 
170/750) for Different Basis Sets0 

N CPU(sec)b 

3,125 20 
5,000 27 

12,960 60 
24,010 100 
36,864 159 

n In all cases, the I/O times were 7 sec. 
h 100 recursion steps were used. 

Figures 3-5 show similar results for Band 2, for increasing values of Vi, 
Vj=iVrad, Vi= Vrad, and V,= l+JJra,. Increasing the frequency of the pump-bath 
probability interchange has a significant effect upon both the pump (part (a)) and 
the total probabilities (part (c)). First, in comparing Fig. 3a to Fig. 2a, note the 
more rapid fall off in the pump excitation at early times, due to the shorter response 
time of the bath. In Fig. 4, in contrast with Fig.s 2, 3, and 5, regular beating pat- 
terns in parts (a) and (c) have been replaced by a rather jagged sequence of maxima 
and minima. In Fig. 5, where Vi > Vrad, sudden growth of excitation in the bath 
modes robs probability from the pump mode. In Fig. 5(b), the effect of rapid pump- 
bath probability interchange is particularly evident at early times. 

Figure 6 shows results for Band 3 (once again, Vi = dvrad), which contains 
15 states. In part (a), note that the maximum probability reaches only 0.0014, about 
3 % of the value in Band 2. In each part of this figure, the same high and low fre- 
quencies that appeared in Fig. 2 are again apparent. This is because all amplitude 
that enters band must come through Band 2, thus providing a good example of 
sequential, rather than direct, multiphoton absorption. 

Central processor times for one transition, as a function of the basis size N, for a 
fixed number of recursion steps II, are listed in Table II. CPU times are 
approximately linear in both N and n. 

IV. CONCLUSIONS 

The recursive residue generation method was presented in the context of a time 
evolving molecule driven by a classical laser field. The molecular Hamiltonian was 
that of an anharmonic oscillator, linearly coupled to a harmonic bath with nS 
degrees of freedom. The harmonic oscillator representation of the sparse 
Hamiltonian matrix was shown to have considerable structure, both in the 
locations of off-diagonal elements, and in the periodically repeating sets of values 
within each off-diagonal. Recognition of this structure allowed construction of a 
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smart matrix-vector multiplier. This multiplier, when incorporated in a minimal 
storage version of the Lanczos algortihm, allowed calculations on systems with 
much larger bases, and and at greatly reduced computation time per transition, 
than in our earlier studes [l, 21. 

The time evolution of a system with 3125 states was studied in detail. Plots of 
state-to-state transition probabilities, for a range a laser-molecule coupling 
strengths, generally showed rapid excitation of the pump mode states, followed by 
reversible excitation of the bath states within the same band of quasidegenerate 
molecular states. 

The RRGM, with utilization of structured sparsity, will allow a much more 
extensive computational study of a number of problems in quantum dynamics. 
Further apllications to laser driven molecules [37, 383, and to the evaluation of 
quantum mechanical time-dependent correlation functions [ 393 will be presented 
elsewhere. 
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